
ar
X

iv
:2

50
1.

00
33

7v
1

 [
cs

.D
C

]
 3

1
D

ec
 2

02
4

Constant Degree Networks for

Almost-Everywhere Reliable Transmission

Mitali Bafna * Dor Minzer†

Abstract

In the almost-everywhere reliable message transmission problem, introduced in [DPPU86], the goal

is to design a sparse communication network G that supports efficient, fault-tolerant protocols for in-

teractions between all node pairs. By fault-tolerant, we mean that that even if an adversary corrupts

a small fraction of vertices in G, then all but a small fraction of vertices can still communicate per-

fectly via the constructed protocols. Being successful to do so allows one to simulate, on a sparse

graph, any fault-tolerant distributed computing task and secure multi-party computation protocols built

for a complete network, with only minimal overhead in efficiency. Previous works on this problem

[DPPU86, Upf92, CGO10, JRV20, BMV24] achieved either constant-degree networks tolerating o(1)
faults, constant-degree networks tolerating a constant fraction of faults via inefficient protocols (expo-

nential work complexity), or poly-logarithmic degree networks tolerating a constant fraction of faults.

We show a construction of constant-degree networks with efficient protocols (i.e., with polyloga-

rithmic work complexity) that can tolerate a constant fraction of adversarial faults, thus solving the

main open problem of [DPPU86]. Our main contribution is a composition technique for communication

networks, based on graph products. Our technique combines two networks tolerant to adversarial edge-

faults to construct a network with a smaller degree while maintaining efficiency and fault-tolerance. We

apply this composition result multiple times, using the polylogarithmic-degree edge-fault tolerant net-

works constructed in [BMV24] (that are based on high-dimensional expanders) with itself, and then with

the constant-degree networks (albeit with inefficient protocols) of [Upf92].

1 Introduction

Many real-world applications involve computations on inputs that might be distributed across many ma-

chines in a large network. This need has led to the development of protocols for important distributed tasks

like Byzantine agreement [LSP82], collective coin flipping, poker and more generally, for secure multiparty

computation, which also ensures privacy in addition to correct computation. In fact, this culminated in the

completeness theorems of [BGW88, CCD88] showing that any joint function can be computed even with

a constant fraction of Byzantine parties–those whose behavior might deviate arbitrarily from the protocol–

while ensuring correctness and privacy.

Most of these protocols assume that each machine can directly communicate with every other machine in

the network. However, such assumptions are impractical for modern large-scale networks, which are often

sparsely connected. To address this, the seminal work of Dwork, Peleg, Pippenger, and Upfal [DPPU86]

studied the question of designing sparse networks that are resilient to Byzantine node failures. Their goal

was to design a sparse network G of degree d, on n nodes, where honest nodes can still communicate and

*Department of Mathematics, Massachusetts Institute of Technology.
†Department of Mathematics, Massachusetts Institute of Technology. Supported by NSF CCF award 2227876 and NSF CA-

REER award 2239160.

1

http://arxiv.org/abs/2501.00337v1

execute protocols even if t nodes are adversarially corrupted. Since t might be much larger than d, some

honest nodes may become isolated if all of their neighbors are corrupted. Therefore, Dwork et al. allow x
(possibly larger than t) nodes to become “doomed”, requiring only the remaining n−x nodes to successfully

participate in all protocols between them.

They proposed the almost-everywhere reliable message transmission problem as a way to simulate any

fault-tolerant protocol on the complete network. The problem asks one to construct an n-vertex sparse com-

munication network G = (V,E), along with a set of efficient communication protocols R = {R(u, v)}u,v∈G
between pairs of vertices of G that are fault-tolerant. Formally, we are interested in the following parameters

of G and R:

1. Sparsity: The degree of G. Ideally, we would like it to be an absolute constant, independent of n.

2. Round complexity: The number of rounds of communication, where in each round every vertex can

send and receive messages from its neighbors in G. We remark that trivially, the number of rounds is

at least the diameter of the graph, and in particular it is at least Ω(log n) if G has a constant degree.

3. Work complexity: The work complexity of a protocol is the total computation performed by all ver-

tices to implement it. The work complexity of R is the maximum over the work complexity of the

protocols R(u, v). Ideally, we would like this to be polylogn.

4. (ε, ν)-Fault-Tolerance: If an adversary corrupts any ε-fraction of the nodes of G then all but νn
nodes, referred to as doomed nodes, can communicate perfectly with each other using the protocols

in R. Ideally, we would like to be able to take ε constant bounded away from 0, and ν as a vanishing

function of ε, say ν = εΩ(1).

The work [DPPU86] gave a construction of constant degree networks with protocols that have work com-

plexity polylog(n) and tolerance parameters ε = 1/ log n, ν = Ω(1). They also showed how to simulate any

protocol built for the complete graph (that is tolerant to νn-fraction of vertex corruptions), using communi-

cation on the edges of the sparse graph G. The resulting protocol on G is tolerant to εn adversarial corrup-

tions, and ensures that all but νn-fraction of the parties compute the desired output. In [GO08, CFG+22]

this was extended to secure multiparty computation (MPC), in that, given G as above, they showed how to

construct a related sparse network that supports almost-everywhere secure MPC. Following [DPPU86] the

works [Upf92, CGO10, CGO12, JRV20, BMV24] improved parameters for the a.e. transmission problem.

While these works obtained optimality in a few parameters, they did not achieve all of the ideal parameters

simultaneously. Our main result is a sparse network achieving it: our network has constant degree, and our

communication protocols have polylogarithmic round and work complexity and constant fault tolerance.

This resolves the main open problem of [DPPU86].

At the heart of our proof is a composition technique for communication protocols, reminiscent of

the composition technique from the theory of probabilistically checkable proofs (PCPs) [FGL+96, AS98,

ALM+98] and of expander graphs [RVW02]. Our composition result (Lemma 3.1) shows how to compose

two networks that are tolerant to edge-faults in the network and obtain a new network with smaller degree,

while maintaining the tolerance and work-complexity. Here and throughout, the edge-fault model is the

model in which the adversary is allowed to corrupt an arbitrary ε-fraction of the edges of the graph, and the

(ε, ν)-fault-tolerant requirement is that at most ν fraction of the vertices are doomed.1

1Note that in the edge-fault model, an adversary can corrupt any small fraction of edges, thus it is stronger than the adversary in

the adversary in the vertex corruption model. Indeed, to mimic a vertex corruption, the edge-fault adversary can choose to control

all edges adjacent to a vertex.

2

Interestingly, we do not know whether an analog of our composition statement holds if the networks G
and H are only promised to be tolerant against vertex corruptions. While the two models are qualitatively

the same on constant degree graphs (up to constant factors), results in the edge-fault model are substan-

tially more powerful for graphs of super constant degree. For instance, the prior state-of-the-art results in

literature [CGO10, JRV20] constructed (poly)logarithmic-degree graphs that are tolerant against constant-

fraction of vertex-faults, but are not tolerant against a constant-fraction of edge-faults. The work [BMV24]

is the first work that constructs polylogarithmic degree networks with routing protocols that are efficient and

tolerant against constant fraction of edge corruptions.

We instantiate our composition theorem by composing the network of [BMV24] with itself a few times,

until the degree becomes sufficiently small (but still super constant). Then, we compose the resulting net-

work with the constant degree networks of [Upf92] to reduce the degree to a constant, while maintaining the

constant tolerance and polylogarithmic work complexity.

1.1 Our Results

We now state our main result formally.

Theorem 1.1. There exists D ∈ N such that for all ε > 0 and large enough n, there exists a D-regular

graph G with Θ(n) vertices and a set of protocols R = {R(u, v)}u,v∈G between all pairs of vertices in G,

with work complexity polylogn and round complexity Õ(log n), such that if at most ε-fraction of edges are

corrupted, then at most poly(ε)-fraction of vertices in G are doomed. Furthermore, there is a polynomial

time deterministic algorithm to compute G, and a randomized algorithm to construct the protocols R, which

is guaranteed to satisfy the above tolerance guarantees with probability 1− exp(−npolylogn).

To prove Theorem 1.1, we first establish a version of the above result in the “permutation model” of

routing (which is the model most relevant for PCP constructions). In this model, given a permutation π on

V (G), the goal is to construct a set of protocols R = {R(u, π(u))}u∈G , such that if at most ε-fraction of

behave adversarially, then at most f(ε)-fraction of the protocols in R fail, denoted by (ε, f(ε))-tolerance;

see Definition 2.3 for a formal definition.

Lemma 1.2. There exists D > 0 such that for all ε > 0, and all n, there exists a D-regular graph G =
(V,E) with Θ(n) vertices such that for each permutation π : V → V , the graph G admits protocols R =
{R(u, π(u))}u∈G with work complexity polylogn that are (ε,poly(ε))-tolerant. Both the graph and the

protocols can be constructed deterministically in polynomial time.

We prove Lemma 1.2 in Section 4.3, and in Section 4.4 we show how to deduce Theorem 1.1 from it.2

1.2 Implications

We now discuss the implications of Theorem 1.1. Firstly, it implies that one can simulate any protocol built

for the complete network on the sparse networks from Lemma 1.2, albeit with polylogarithmic overhead.

This is because any message transfer on the edge (u, v) in the complete graph, can be simulated using the

protocol R(u, v) for the sparse network. More precisely:

Corollary 1.3. Let G be a D-regular graph on n vertices from Lemma 1.2 with the set of protocols R =
{R(u, v)}u,v∈V (G), then for all ε > 0 the following holds. Suppose P is a protocol for a distributed task T

2We remark that the two models discussed above are morally equivalent: Theorem 1.1 also implies Lemma 1.2, albeit with a

randomized algorithm for constructing R.

3

on the complete network on n nodes that can tolerate up to εcn corrupted nodes, where c > 0 is a universal

constant. Then, there exists a protocol Π such that:

1. The number of rounds of communication in Π is at most round(P)polylogn, where round(P) denotes

the round complexity of P .

2. The work complexity of Π is at most work(P)polylogn, where work(P) denotes the work complexity

of P , that is, the total computation performed by all nodes to implement P .

3. If an adversary corrupts any ε-fraction of nodes, then there is a set of nodes S ⊂ V where |S| >
(1− εc)n that output the desired value as required by the task T .

One can instantiate Corollary 1.3 with protocols for Byzantine agreement to get sparse networks that

support protocols for almost-everywhere agreement. Using the result of [GO08], we immediately get sparse

networks that support almost-everywhere secure MPC. We refer the reader to [GO08, Theorem 4.3] and

further developments by [CFG+22] for a formal treatment of the topic.

1.3 Techniques

The proof of Lemma 1.2 consists of several building blocks. First, we need a construction of network with

the properties as outlined in the theorem, except that we allow the degree of G to be poly-logarithmic in

n. This component is achieved by the construction of [BMV24]. Second, we need a network with constant

degree which is tolerant to a constant fraction of edge corruptions, however it is allowed to be inefficient.

This component is achieved by the construction of [Upf92]. Finally, we need a composition technique which

allows one to combine two networks with fault-tolerant routing protocols, one large and another small one,

to get a network that inherits the degree of the smaller network and has fault-tolerant routing protocols. This

is shown in Lemma 3.1 and is the main technical contribution of the current work.

In the rest of the technical overview, we elaborate on the proof of Lemma 3.1, and at the end we discuss

how to use this result to achieve Lemma 1.2.

1.3.1 The Balanced Replacement Product

Our composition uses a graph product known as the balanced replacement product [RVW02]. Given an

n-vertex, d-regular graph G and a d-vertex, k-regular graph H , consider the graph Z = G r H defined as

follows. First, for each vertex of G, fix some ordering on the d edges incident to it.

• Replace a vertex u of G with a copy of the graph H , henceforth denoted by Cu and referred to as the

cloud of u. For u ∈ V (G), c ∈ V (H), let (u, c) ∈ V (Z) denote the cth vertex in the cloud of u. Also,

let (u, c)1 denote u ∈ V (G) and (u, c)2 denote c ∈ V (H).

• Associate each edge e ∈ E(G) incident on u to a unique vertex in the cloud of u, according to the

ordering of the edges incident on u.

• For an edge e ∈ E(G) with endpoints u, v, we add deg(H) parallel edges between the vertices (u, e1)
and (v, e2), where these are the vertices in Cu and Cv that are associated to the edge e.

Note that Z has |V (G)||V (H)| vertices (using the fact that deg(G) = |V (H)|) and each vertex (u, a) has

deg(H) edges incident on it inside the cloud Cu and deg(H) edges incident on it outside the cloud. This

implies that Z has degree 2deg(H) and also that the total number of edges inside clouds is equal to the total

4

number of edges across clouds. The utility of this fact will be that if at most ε-fraction of edges in G r H
have been corrupted, then at most 2ε of the edges inside the clouds and at most 2ε of the edges across the

clouds have been corrupted.

1.3.2 Routing Protocols on the Composed Graph

The next step in our proof is to design fault-tolerant routing protocols on Z = G r H , given a set of routing

protocols for G and H that are tolerant against a constant fraction of edge corruptions. The work complexity

of the new protocols is roughly the product of the work complexities of the protocols on G and H . Thus, as

the degree of Z is 2deg(H), we have produced a network with similar performance to G but much smaller

degree.

Our composition result is proved for the permutation model (towards proving Lemma 1.2). Henceforth

assume that for every permutation π′ on V (G), there is a set of fault-tolerant protocols {R(u, π′(u))}u∈G
and similarly fix a set of fault-tolerant protocols {P (a, b)}a,b∈V (H) between all pairs of vertices of H . Now,

given any permutation π : V (Z) → V (Z), we will design routing protocols R = {R((u, a), π(u, a))}(u,a)∈Z
whose fault-tolerance parameters depend on the tolerance parameters of G and H .

At a high level, each protocol R((u, a), π(u, a)) simulates some protocol R of G for a message transfer

from u to π(u, a)1; note that u and π(u, a)1 are the clouds that (u, a) and π(u, a) belong to respectively.

To decide which protocol on G to use for each transmission from (u, a) → π(u, a), we first “decompose”

the permutation π into d = deg(G) permutations π1, . . . , πd on V (G) (see Section 3). We then invoke the

premise on the graph G, asserting that there are protocols Pi = {R(u, πi(u))} corresponding to each match-

ing πi. Now the protocol R((u, a), π(u, a)) simulates the protocol R(u, πi(u)), where πi(u) is guaranteed

to be the cloud labeled π(u, a)1.

The simulation of R on Z proceeds by emulating the transfer of some message across an edge e = (v,w)
in G, using a message transfer from the cloud of v to the cloud of w in Z . For simplicity imagine the case

when no edges are corrupted. In the composed protocol, a vertex (u, a) begins by sending its message m to

every vertex in its cloud using the protocols of H (recall that each cloud is a copy of H). After that step,

each one of the vertices {(u, b)}b∈V (H) holds the message m, and next the first round of R is implemented.

More precisely, suppose that in the protocol R there is a message transmission from u to v along the edge e.

Then in the simulation over Z , there is a transmission from the cloud of u to the cloud of v: the message m
is first passed from (u, e1) to (v, e2) using the parallel edges between the vertices (u, e1) and (v, e2) (which

are the vertices in the clouds that are associated to e), and then the message is propagated in the cloud of v
using the protocols of H again. Thus, at the end of the first round, each cloud Cv receives the message that v
was supposed to receive from u in the first round. Subsequent rounds of R are simulated in a similar manner.

To argue correctness, one observes that if there are no corruptions, then each cloud Cw acts “unanimously”

(in the sense that all vertices in it are in full agreement) and hence can be thought of as a single entity, so

that the correctness follows from the correctness of R.

Now suppose that an ε-fraction of all the edges between clouds are corrupted, and no edges inside clouds

are corrupt. In this case the clouds also act unanimously, and therefore we can analyze it by invoking the tol-

erance guarantees of G. Specifically, if the adversary corrupts more than 1/2-fraction of the parallel edges

between two neighboring clouds Cv and Cw, it corresponds to an adversarial corruption of the edge (v,w) in

G. By Markov’s inequality there can be at most a 2ε-fraction of such edges in G. Then, R((u, a), π(u, a))
is a simulation of R under these edge corruptions, where each cloud behaves unanimously during the simu-

lation. The tolerance guarantees of G imply that most protocols R(u, πi(u)) succeed, giving us that most of

the protocols R((u, a), π(u, a)) succeed.

Let us finally discuss the general case, in which an ε-fraction of all the edges of Z are corrupted. This

5

could include edges inside clouds too and we need to be more careful while analyzing the simulation. In

particular, if at most ε fraction of edges of Z are corrupted, most clouds will contain at most
√
ε-fraction

bad edges. The tolerance guarantees of H now imply that at most poly(ε)-fraction of the vertices in each

such cloud are “doomed”, that is, the rest of the 1− poly(ε)-fraction of vertices can perfectly communicate

with each other. Given this, the clouds will behave almost-unanimously during the simulation of R – each

incoming/outgoing message at v in R, would be held by the non-doomed vertices in Cv. Thus if R succeeds,

then by the simulation guarantee, most vertices in the cloud of π(u, a)1 would receive the correct message,

and finally π(u, a) can take a majority vote among these to get m. Therefore, we can still invoke the

tolerance of G to get that most of the protocols R((u, a), π(u, a)) succeed.

This completes the informal description of the protocol on Z and its fault-tolerance; we defer the reader

to Section 3 for a more formal presentation.

1.3.3 Using Composition to Obtain Sparse Networks

With the composition result in hand, we now explain how to prove Theorem 1.2. We start off with an

n-vertex regular graph G from [BMV24] that admits efficient tolerant protocols, where the degree of G
is ∆ = poly(log n). We take a copy of G, which we call G̃, on ∆ vertices3 thus, the degree of G̃ is

∆̃ = poly(log log n). Composing G and G̃ gives a graph G′ on n∆ vertices that admits efficient, tolerant

protocols and has degree O(∆̃) = poly(log log n). Repeating the composition one more time yields a graph

G′′ on Θ(n∆∆̃) vertices with degree d = poly(log log log n) 6 log log n.

Finally, we take a constant degree expander graph H on D vertices with sufficiently good spectral

expansion, as considered in [Upf92]. Upfal showed that such graphs H admit protocols that are tolerant

against constant fraction of edge corruptions and furthermore each vertex in H has work complexity at most

2O(D) = poly(log n). We invoke one final composition step, composing G′′ with H , to get a constant degree

graph that admits efficient and tolerant protocols.

2 Preliminaries

Notations: For functions f, g : N → [0,∞), we denote f . g or f = O(g) if there exists an absolute

constant C > 0 such that f 6 Cg. Similarly, we denote f & g or f = Ω(g) if there exists an absolute

constant C > 0 such that f > Cg.

2.1 Routing Protocols under Adversarial Corruptions

We start the discussion by formally defining communication protocols on a graph G.

Definition 2.1. Given a graph G, a routing protocol P on G is a set of rules where at each round, every

vertex receives messages from its neighbors, performs an arbitrary computation on all the messages received

so far, and then based on the computation, sends some messages to its neighbours in G. There are two main

parameters of interest:

1. Round complexity of P : This is the number of rounds of communication in P and is denoted by

round(P).

3In reality we take G̃ on ñ number of vertices, where ∆ 6 ñ 6 O(∆), since that is the guarantee we have from the algebraic

constructions of HDX.

6

2. Work complexity of P : The work done by a vertex in P is the computation it performs throughout the

protocol, as measured by the circuit size for the equivalent Boolean functions that the vertex computes.

The work complexity of P , denoted work(P), is the total work done by all the vertices to execute P .

Given this definition of communication over a graph G, we next define the two routing models that we

study in this paper and the notion of fault-tolerance for them. We consider adversarial corruptions of edges –

we say an edge (u, v) ∈ G is uncorrupted if whenever u transfers a message σ across (u, v), then v receives

σ; otherwise, we say the edge (u, v) is corrupted.

The first model we consider is the almost-everywhere reliable transmission problem [DPPU86].

Definition 2.2. In the almost-everywhere reliable transmission model, the goal is to design a set of routing

protocols P = {P (u, v)}u,v∈V (G) for message transmission between all pairs of vertices of G, where

P (u, v) transmits a message between u and v. The parameters of interest are,

1. Round complexity of P := maxu,v round(P (u, v)).

2. Work complexity of P := maxu,v work(P (u, v)).

3. Error Tolerance: The set of protocols P is said to be (ε, ν)-vertex (edge) tolerant if the following

holds. Suppose an adversary corrupts any set of at most ε-fraction of the vertices (edges) of G. Then

there exists a set S of at least (1− ν)-fraction of vertices G, such that any two vertices u, v ∈ S can

reliably transmit messages between each other using P (u, v). The set of vertices outside S will be

referred to as doomed nodes.4

We also consider the more refined permutation routing model, which is relevant to PCPs [BMV24].

Definition 2.3 (Permutation Model). In the permutation routing model, given a permutation π : V (G) →
V (G), every vertex u wishes to send a message to π(u). The goal is to design a set of routing protocols

P = {P (u, π(u))}u∈V (G), where P (u, π(u)) transmits a message between u and π(u). The parameters of

interest are,

1. Round complexity of P := maxu round(P (u, π(u))).

2. Work complexity of P := maxu work(P (u, π(u))).

3. Error Tolerance: The set of protocols P is (ε, ν)-tolerant if the following holds. Suppose an adversary

corrupts any set of at most ε-fraction of the edges of G. Then at least (1−ν)-fraction of the protocols

P (u, π(u)) can reliably transmit a message between u and π(u).

3 Composition of Protocols using the Replacement Product

In this section, we let G and H be regular unweighted graphs (possibly with multi-edges) with |V (H)| =
deg(G) = d that both admit efficient fault-tolerant routing protocols. We show that the graph Z = G r H ,

as defined in Section 1.3.1, also admits an efficient fault-tolerant protocol.

4Here we have adapted the notion of doomed vertices for the edge-corruption model. In the context of vertex corruptions, that

is, when all corrupt edges are concentrated on a few vertices, our notion of doomed vertices includes the corrupted vertices as well

as those which are not corrupted by the adversary, but cannot communicate nevertheless.

7

3.1 The Protocol on Z

Consider the graph G,H and fix a set of protocols PH = {Pa,b}a,b∈V (H) between all pairs of vertices of H .

Fix a permutation π on V (Z); we will build a set of protocols R = {R((u, a), π(u, a))} to route π.

Our first step is to decompose π into d permutations π1, . . . , πd on V (G). Specifically, we break the

set of pairs {(u, a), π(u, a)}(u,a)∈V (Z) into d sets, S1, . . . , Sd. Each set Si contains n pairs such that their

projection on the first coordinate forms a permutation πi on G, i.e. π(u, a)1 = πi(u) for all (u, a) ∈ Si.

Now, for each permutation πi we consider the set of routing protocols Pi = {R(u, πi(u))} that route πi on

G. Then for every vertex (u, a) in Si, the protocol R((u, a), π(u, a)), “simulates the protocol” R(u, πi(u)),
denoted by R henceforth.

In the introduction, we explained informally how one “simulates a protocol R” that is built for G, on

the graph Z , and we now we make this more formal. The simulation on Z uses a sub-procedure called

the cloud-to-cloud protocol, which at a high level, passes a message vector from a cloud Cu to a cloud Cv,

to emulate a message transfer from u to v across an edge (u, v) in G. At the first step in our protocol,

recall that (u, a) sends its message m to each vertex in Cu using the protocols PH on H . Then the first

round of R is implemented– each vertex in Cu, computes the message that u would have sent across an

edge (u, v) (according to R), given the message it has received from (u, a). This can be represented by

an outgoing message vector on Cu. In the ideal scenario, this vector equals m′ on every coordinate, where

m′ is the message that u sends to v in the first round of R when instantiated with m. This message vector

is now transferred to Cv, using the cloud-to-cloud protocol, which we discuss in more detail later on. The

subsequent rounds of R are simulated in a similar way. That is, at any round t, for every cloud Cv, each

vertex (v, b) in it, first aggregates all the messages it received from its neighbors in the previous round, as

part of the simulation of R. It computes the outgoing message that R would have sent across any incident

edge (v,w) on this transcript and this is represented by an outgoing message vector on the cloud Cv. This

vector then gets transferred to the cloud Cw via the cloud-to-cloud protocol.

To formalize this protocol we set up some notations. Let Ev(G) be the set of edges that are incident on v
in G, and let 2E(G) represent the set of pairs (v, e) where e ∈ Ev(G). We specify a protocol R using a set

of functions {OUTt : 2E(G)×Σ∗ → Σ∗∪{⊥}}t6T , where OUTt(v, e, σ) denotes the message that a vertex

v sends along an edge e at time t, given the transcript σ of the previous rounds. The message received at v at

the end of the protocol is denoted by OUTT (v, σ) and OUTT is also part of the functions above. To simulate

R on Z , at every vertex (v, b) we maintain the transcript of the protocol using the strings {historyt(v, b)}
and the outgoing messages it sends with respect to the edge e ∈ Ev(G), denoted by OUTt((v, b), e). At any

time step t, we have an outgoing message vector on the cloud Cv, denoted by [OUTt((v, b), e)], to be sent

across the edge e, to the cloud Cw using the cloud-to-cloud protocol from Cv to Cw. The incoming message

vector on Cw in the next round is denoted by [INt+1((w, c), e)].
Given the cloud-to-cloud protocol, the routing protocol for Z proceeds as follows.

Algorithm 1 (Generate Protocols on Z to Route a Permutation on V (Z)).
Input:

1. A graph G with an algorithm that given any permutation π on V (G), constructs the set of proto-

cols P(π) = {P (u, π(u))}u∈V (G).

2. A graph H with |V (H)| = deg(G) and a set PH of routing protocols {P (a, b)}a,b∈V (H).

3. A permutation π : V (Z) → V (Z).

8

Output: A set of routing protocols R = {R((u, a), π(u, a))} on Z .

1. Create a bipartite graph B = (L ⊔ R,E), with the left and right vertex sets, L = R = V (G)
and for every pair ((u, a), π(u, a)), add an edge between u and π(u, a)1 (the vertex associated to

π(u, a) in G) with the label ((u, a), π(u, a)).

2. Decompose B into d = deg(G) matchings, each represented by a permutation π1, . . . , πd on

V (G). Let Si be the set of edge labels ((u, a), π(u, a)) corresponding to the matching πi.

3. Let Pi be the set of protocols that route πi on G, that is, Pi = {R(u, πi(u))}u∈G, with T denoting

the maximum round complexity of all the protocols. Associate to every pair ((u, a), π(u, a)) the

routing protocol R(u, πi(u)) from Pi, where i is the unique index for which ((u, a), π(u, a))
belongs to the set Si; note that π(u, a)1 = πi(u).

4. For each vertex (u, a), output the following protocol,

Protocol R((u, a), π(u, a)) for message transmission from (u, a) to π(u, a):

1. At every vertex (v, b) ∈ V (Z) initialize the strings: {historyt(v, b)}t6T and

{OUTt((v, b), e)}e∈Ev (G),t6T , to empty strings; these will eventually store the transcript and the

outgoing messages of the protocol at (v, b).

2. Set history1(u, a) = m, the message that (u, a) wishes to send. Then for each b ∈ H , send m
via the protocol P (a, b) from PH , and set history1(u, b) to the message received.

3. Let R be the routing protocol on G that is associated to ((u, a), π(u, a)), specified by the func-

tions {OUTt : 2E(G) × Σ∗ → Σ∗ ∪ {⊥}}t6T . Simulate the protocol R as follows:

For every round t ∈ {1, . . . , T}:

(a) If t = 1, then skip to step (b).

Else, for every vertex (v, b) in Z and e ∈ Ev(G),
Set historyt(v, b) = historyt−1(v, b) ◦ INt((v, b), e),
where [INt((v, b), e)]b∈H is the incoming message vector received at round t on the cloud

Cv with respect to the edge e.

(b) If t = T then for every vertex (πi(u), b) in Cπi(u):

set the message received as, OUTT ((πi(u), b)) = OUTT (πi(u), historyT (πi(u), b)), then

end the protocol.

Else, for every vertex (v, b) in Z and edge e ∈ Ev(G),
set OUTt((v, b), e) = OUTt(v, e, historyt(v, b)).

(c) For every vertex v ∈ G and edge e ∈ Ev(G), run the cloud-to-cloud protocol with input e,

the graph H with protocols PH and message vector [OUTt((v, b), e)]b∈Cv
.

We now discuss the cloud-to-cloud protocol. At a high level, in this protocol we simulate a message transfer

across an edge e of G with endpoints v,w as a message transfer from Cv to Cw. We do so by using the

deg(H) parallel edges between (v, e1) and (w, e2), the vertices in the clouds of v and w that are associated

to the edge e. Thus the cloud to cloud transfer takes the form

Cv → (v, e1) → (w, e2) → Cv,

where each arrow above denotes a propagation using majority votes. More precisely, the cloud-to-cloud

9

protocol proceeds as follows.

Protocol 1 (Cloud to Cloud Protocol).

Input: The graphs G and H , with a set of protocols between all pairs of vertices PH = {P (a, b)}a,b∈H ,

an edge e ∈ G, that is associated to (v, e1) in Cv and (w, e2) in Cw and a message vector Min : Cv →
Σ.

Output: A message vector Mout : Cw → Σ.

1. Every vertex (v, b) ∈ Cv, transmits the message Min(v, b) to (v, e1) via the protocols P (b, e1).

2. The vertex (v, e1) takes a majority of the messages it receives from vertices in Cv, and transmits

these messages to (w, e2) via the parallel edges between (v, e1) and (w, e2).

3. The vertex (w, e2) takes a majority of the messages it receives from (v, e1) and transmits this

message to every vertex (w, c) ∈ Cw via the protocol P (e2, c), that sets Mout(w, c) as the

message it receives.

This completes the formal description of the routing protocol over Z .

3.2 Analysis of Protocols Generated by Algorithm 1

Each protocol R((u, a), π(u, a)) is a simulation of some protocol R = R(u, πi(u)) on G, where every

message transfer on an edge in G is simulated by a cloud-to-cloud transfer in Z . As discussed in the

introduction, it is easy to see that these protocols succeed in simulating the protocols on G correctly if there

are no edge corruptions. To address the general case where edge corruptions are present, we think of each

edge e in G as a “super-edge”. Under a set of edge corruptions on Z , we say that a super-edge e = (v,w)
is good if the corresponding cloud-to-cloud transfer from Cv to Cw always succeeds; otherwise, we say e is

bad. When we say the “cloud-to-cloud transfer is successful”, we roughly mean that if a majority of vertices

in Cv set their outgoing message as σ, then a majority of vertices in Cw will receive σ at the end of Protocol 1.

We first show that if at most ε-fraction of edges in Z are bad, then at most O(
√
ε)-fraction super-edges are

bad, denoted by the set S . We then show that if the protocol R(u, πi(u)) succeeds in transferring a message

from u to πi(u) under any adversarial behavior of the edges in S , then R((u, a), π(u, a)) also succeeds in

transferring a message from (u, a) from π(u, a). Once we have this, since the measure of S is small, the

tolerance guarantees of G imply that only few of the protocols R(u, πi(u)) are unsuccessful. This in turn

implies that only a few of the protocols R((u, a), π(u, a)) are unsuccessful. The core of the analysis of

Algorithm 1 is captured by the following lemma.

Lemma 3.1. There is c > 0 such that the following holds. Suppose that G and H are regular graphs as

above satisfying that:

1. The graph G has an (ε1, ν1)-edge-tolerant routing protocol for every permutation on V (G) with work

complexity W1 and round complexity R1,

2. The graph H has deg(G) vertices, and there is a collection of protocols PH = {P (a, b)}a,b∈V (H)

between all pairs of vertices, such that for any adversary corrupting at most ε2-fraction of E(H):

(a) At most ν2-fraction of the vertices of V (H) are doomed.

(b) The set of protocols P have work and round complexity W2 and R2 respectively.

10

If ν2 6 c, then for every permutation π on V (Z), Algorithm 1 produces R = {R((u, a), π(u, a))} a set

of protocols on the graph Z = G r H that are (ε, ν)-tolerant, for all ε . min(c, ε22, (ε1 − O(ν2))
2) and

ν . O(
√
ε+ν1+ν2). All protocols in R have work complexity O(W1W2) and round complexity O(R1R2).

Furthermore, if the protocols on G and H are polynomial time constructible then Algorithm 1 also runs in

polynomial time.

The rest of this section is devoted for the proof of Lemma 3.1.

Fix a permutation π : V (Z) → V (Z). As shown in the first two steps of Algorithm 1, π corresponds to

d = deg(G) many permutations π1, . . . , πd on V (G). We will now prove that the protocols generated are

tolerant against a constant fraction of edge-corruptions in Z .

The outer protocol over clouds: As in Algorithm 1, fix the set of routing protocols Pi = {P (u, πi(u)))}
over G, each of round complexity R1 and work complexity W1.

The inner protocol inside clouds: We fix the set of protocols PH = {P (a, b)}a,b∈H , as in Algorithm 1,

between all pairs of vertices v,w in H . Since the graph inside every cloud Cu is isomorphic to H , we can

use these protocols for message transfers between the vertices of Cu.

Bad super-edges and bounding them: We now begin the error analysis of Algorithm 1, and for that we

need to introduce a few notions. First, fix any set of corrupted edges E ⊂ E(Z) with measure at most ε,

which satisfies the assumptions in the lemma statement. A cloud Cv is called bad if it contains too many

corrupted edges, and more precisely, if Pre∼E(Cv)[e ∈ E] >
√
2ε; otherwise, we say Cv is good. Since the

edges inside clouds constitute at least 1/2 of the overall number of edges, by Markov’s inequality at most√
2ε-fraction of the clouds Cv are bad.

Let us now fix a set of doomed vertices for every cloud Cv, that is, the smallest set of vertices Dv such

that for every pair of vertices a, b /∈ Dv, the internal protocol P (a, b) can successfully transfer a message

from (v, a) to (v, b). If Cv is a good cloud we know that the fraction of corrupted edges inside it is at

most
√
2ε which is smaller than ε2. Since the induced subgraph over any cloud Cv is isomorphic to H , the

tolerance guarantees of H imply that at most ν2-fraction of the protocols P (a, b) fail, which gives that the

fractional size of Dv is at most ν2.

A super-edge e ∈ E(G) with endpoints v,w is said to be corrupted if either Cv or Cw is a bad cloud,

(v, e1) ∈ Dv, (w, e2) ∈ Dw, or at least
√
2ε-fraction of the (parallel) edges between (v, e1) and (w, e2) are

corrupted. Using Markov’s inequality and a union bound we get that

Pr
e∼E(G)

[e is corrupted] . ε1/2 + ν2. (1)

Cloud to Cloud Transfer on a Good Super-edge: the following claim asserts that the cloud-to-cloud

transfer works well on an uncorrupted super edge. More precisely:

Claim 3.2. Fix any uncorrupted super-edge e ∈ E(G) with endpoints v,w. Suppose the cloud-to-cloud

transfer in Protocol 1 is run with the edge e and a message vector Min : Cv → Σ satisfying Min(b) = σ
for all b ∈ Cv \ Dv. Then the output of the protocol is Mout : Cw → Σ satisfying Mout(c) = σ for all

c ∈ Cw \ Dw.

Proof. Let e correspond to the vertices (v, e1) in Cv and (w, e2) in Cw. The proof of this claim is broken

into three message transfers: from Cv to (v, e1), from (v, e1) to (w, e2), and finally from (w, e2) to Cw,

and we argue about each step separately. Firstly, if e1 is not in Dv, then it will receive the value σ from all

11

vertices Cv \ Dv, which is at least 1 − ν2 > 1/2. Therefore (v, e1) will compute the correct majority and

set its outgoing message as σ.

Next, for the message transfer between (v, e1) and (w, e2), since at most
√
ε-fraction of the edges

between them are corrupted, the vertex (w, e2) will receive σ on at least 1/2-fraction of the edges, thus

setting its outgoing message as σ.

Finally for the message transfer between (w, e2) to Cw, every vertex in Cw \ Dw receives the message

σ from (w, e2) since e2 /∈ Dw, thus proving the claim.

Analysis of the Protocol R((u, a), π(u, a)): Let S be the set of corrupted super-edges. Suppose that

((u, a), π(u, a)) is associated to the protocol R(u, πi(u)). We argue that the protocol R((u, a), π(u, a)) is a

correct simulation of the protocol R(u, πi(u)) on G when run with the set of corrupted edges S . Formally,

we show:

Claim 3.3. Fix a set E ⊆ E(Z) and let S ⊆ E(G) be the set of corrupted super edges as above. Suppose the

vertices (u, a) and π(u, a) satisfy that a /∈ Du, π(u, a)2 /∈ Dπi(u) and the protocol R(u, πi(u)) is successful

in the message transfer from u → πi(u) with corruption set S under any adversarial strategy on it. Then

Algorithm 1 is successful in transferring a message from (u, a) to π(u, a) with corruption set E under any

adversarial behavior on it.

Proof. Henceforth, suppose that a /∈ Du and let m be the message that (u, a) wishes to send to πi(u, a).
Our analysis will compare the transcript of R((u, a), π(u, a)) with the transcript of R(u, πi(u)), denoted

henceforth by R, and show that they are equal up to the adversarial behavior of the edges in S . To do so, we

will define a protocol RS which is the same as R, except the messages sent across S are “erased”. Then we

will show that the transcript of R((u, a), π(u, a)) matches the transcript of RS on the locations that haven’t

been erased.

Let us start by defining RS . In this protocol, the message that v sends across any edge e in S is ⋆, which

is then received as ⋆ on the other end. Furthermore, the outgoing message that v sends on an edge e not in

S is computed by taking into account the erasures on its transcript from the previous rounds – it sends σ on

e, if on every setting of the erased indices in its transcript, R would have sent out σ; otherwise v sends a ⋆.

Formally, let the protocol R = R(u, πi(u)) be specified by the functions {OUTt : 2E(G)×Σ∗ → Σ∗∪{⊥}},

that is, OUTt(v, e,H) is the message that the vertex v ∈ G sends across the edge e ∈ Ev(G) at round t when

given the transcript H of the previous rounds. We extend the definition of the function OUTt(v, e,H) to the

setting where some values in H might be ⋆’s: OUTt(v, e,H) is defined to be σ if it equals σ for all fixings

of the ⋆-locations, and ⋆ otherwise. Let historyt(v) denote the transcript of RS (when run on the initial

message m at u) at v up to round t, and let Mt(v, e) denote the message that v sends across e at round t in

RS . Concretely we have the following inductive definition for these strings,

history1(v) =

{
m if v = u,

∅ otherwise.
,

historyt(v) = historyt−1(v) ◦e∈Ev(G) with endpoint w Mt−1(w, e),

and finally for t 6= T ,

Mt(v, e) =

{
⋆ if e ∈ S,
OUTt(v, e, historyt(v)) otherwise,

and

MT (πi(u)) = OUTt(πi(u), historyT (πi(u))).

12

Next, we argue that the transcript of R((u, a), π(u, a)) matches the transcript of RS on the non-⋆ loca-

tions. Specifically, consider the transcript historyt(v, b) and the outgoing messages OUTt(v, e, historyt(v, b))
at any vertex (v, b), where b /∈ Dv, from the protocol R((u, a), π(u, a)) in Algorithm 1. We argue induc-

tively that for all rounds t, historyt(v, b) equals historyt(v) on all the locations that are not ⋆. Furthermore,

the outgoing message OUTt(v, e, historyt(v, b)) equals Mt(v, e), when the latter is not equal to ⋆.

Base case: For t = 1, we only need to check the claim for vertices in Cu, since every other vertex starts

out with an empty transcript. Since a /∈ Du, it is the case that every b ∈ Cu that is also not doomed receives

m from (u, a) and sets history1(u, b) = m which also equals history1(u), as required. Such a vertex sets its

outgoing message OUT1((u, b), e) on an edge e, to OUT1(u, e,m). When e /∈ S , by definition this equals

M1(u, e), thus proving the claim for t = 1.

Inductive step: We now assume that the hypothesis holds for all rounds t 6 j and prove it for t = j+1.

Fix a vertex (v, b) where b /∈ Dv. By the inductive hypothesis, we know that historyj(v, b) = historyj(v),
where the equality holds for all coordinates where the latter string is not equal to ⋆. For any edge e with

endpoints v,w that is not in S and Mj(w, e) 6= ⋆, by the inductive hypothesis, the cloud-to-cloud protocol

for Cw → Cv is instantiated with the vector M = [OUTj((w, c), e)] satisfying M [c] = Mj(w, e) for every

c /∈ Dw. Since e /∈ S , Claim 3.2 implies that the cloud-to-cloud transfer is successful, and in particular,

the vertex (v, b) receives the message Mj(w, e), which gives us that historyj+1(v, b) = historyj+1(v) on

the locations that are not ⋆. Now we know that the outgoing message that (v, b) sends on any edge e is

OUTj+1((v, b), e, historyj+1(v, b)) and is set to OUTt(v, e, historyj+1(v, b)). Since the transcript at (v, b)
is equal to the transcript at v on all non-⋆ locations, when OUTt(v, e, historyj+1(v)) is not equal to ⋆, then

OUTt(v, e, historyj+1(v, b)) = OUTt(v, e, historyj+1(v)). This in turn equals Mj+1(v, e), when the latter is

not equal to ⋆, thus proving the inductive claim.

Now note that by the assumption in the lemma, R is successful in the message transfer from u to πi(u),
regardless of the adversarial behavior of edges in S . Therefore the received message MT (πi(u)) in the proto-

col RS is equal to m. Using the inductive claim above we get that the transcripts of R((u, a), π(u, a)) match

RS on the non-⋆ locations, and in particular at the final round on πi(v). That is, every vertex (πi(v), b) where

b /∈ Dπi(v), sets OUTT (πi(v), b) as m. Since π(u, a)2 is not in Dπi(v) we get that OUTT (πi(v), π(u, a)2)
equals m, implying that the vertex π(u, a) successfully receives m at the end of the protocol.

Bounding the fraction of failed transmissions from (u, a) to π(u, a): First note that the distribution

over the protocol on G that is associated to the pair ((u, a), π(u, a)) for a uniformly random (u, a) ∼ Z ,

is the distribution over protocols R(u, πi(u)) for uniformly random i ∼ [d], u ∼ G. Secondly, by (1) we

have Pre∈E(G)[e ∈ S] . √
ε + ν2 6 ε1. By the tolerance guarantees of G, we get that for every i, at

most ν1-fraction of the protocols {R(u, πi(u))}u∈G fail when run with the corrupted set of edges S . We can

now apply Claim 3.3 to bound the fraction of failed transmissions between (u, a) and π(u, a) using a union

bound,

Pr
(u,a)∈Z

[the message transfer from (u, a) → π(u, a) fails]

6 Pr
(u,a)∈Z

[a ∈ Du] + Pr
(u,a)∈Z

[π(u, a)2 ∈ Dπ(u,a)1] + Pr
i∈[d],u∈V (G)

[R(u, πi(u)) fails with corruption set S]

. ε1/2 + ν1 + ν2.

This completes the proof of Lemma 3.1.

Remark 3.4. Lemma 3.1 as stated composes graphs G and H where the number of vertices in H is equal

to the degree of G. This lemma can easily be adapted to the setting where the number of vertices in H

13

is at least deg(G) and at most O(deg(G)), and our application requires this extension. The argument is

essentially the same but involves some notational inconvenience. In this case, we modify the graph product

so that each cloud contains |V (H)| vertices, but only deg(G) of them are associated with edges of G. In

particular, the ratio between the number of cross cloud edges and inner cloud edges is no longer 1, and is

instead O(1). This leads to the fraction of bad super-edges being larger by a constant factor, leading to a

change in the tolerance parameters by constant factors too.

4 Routing Network with Constant Tolerance and Constant Degree

In this section we use Lemma 3.1 to prove Theorem 1.2.

4.1 A Routing Network with Polylogarithmic Degree

We first state the construction of the routing network from [BMV24, Lemma D.3] that is based on the

high-dimensional expanders constructed in [LSV05b, LSV05a].

Theorem 4.1. For all n ∈ N there exists a regular graph G = (V,E) (with multiedges) on Θ(n) vertices

with degree polylogn such that for all permutations π on V (G), there is a set of routing protocols R =
{R(u, π(u))}u∈G that is (ε,O(ε))-edge-tolerant for all ε > 0, with round complexity O(log n) and work

complexity polylogn. Furthermore, both the graph and the routing protocols can be constructed in time

poly(n).

For the composition we need a set of protocols between all pairs of vertices of G, such that if some small

fraction of edges behave adversarially, then only few vertices are doomed. This is an immediate corollary

of Theorem 4.1.

Proposition 4.2. Suppose that G is a graph such that for every permutation π, there is an (ε, ν)-edge-

tolerant protocol with ν 6 0.01, work complexity W and round complexity R. Then one can construct

in polynomial time a set of protocols PG = {P (a, b)}a,b∈G with work complexity W |V (G)| and round

complexity O(R), such that if at most ε-fraction of the edges of G are corrupted, then at most
√
ν-fraction

of the vertices of G are doomed.

Proof. We can assume without loss of generality that m = |V (G)| is even. Thus we can decompose the

edge set of the complete graph on m vertices into m matchings/permutations π1, . . . , πm on V (G). For

every matching πi, we let Ri = {R(u, πi(u))}u∈G be the set of protocols routing it.

Let P (u, πi(u)) be the protocol that first sends u’s message to w via R(u,w) for every w ∈ V (G)
and then every w sends the message received to πi(u) via the protocol R(w, πi(u)). Finally πi(u) takes a

majority over all the messages it receives. Let PG = ∪i∈[m]{P (u, πi(u))}u∈G.

It is easy to check that the protocol P (u, πi(u)) has work complexity W |V (G)|, so let us analyze the

fraction of doomed vertices. If at most ε-fraction of the edges are corrupted then at most ν-fraction of the

protocols {R(u, v)}u,v∈V (G) fail. Let D be the set of vertices v for which more than
√
ν-fraction of the

protocols {R(v,w)} fail. One can check that if u, v /∈ D then the protocol P (u, v) successfully transfers

a message from u to v, since v at least 1 − 2
√
ν > 1/2-fraction of the messages that reach v are correct,

leading to it computing the correct majority.

Note that the above proposition gives us a set of fault-tolerant all pair protocols on the N vertex graph

from Theorem 4.1 with a work complexity of NpolylogN, instead of polylogN. This loss is affordable though

since in the composition we will only apply this set of all pair protocols on a graph with N = polylogn

vertices, that is, on the smaller graph in the composition.

14

4.2 A Routing Network with Constant Degree and Exponential Work Complexity

We also need [Upf92, Theorem 2], who showed that constant degree expander graphs have fault-tolerant

routing protocols with work complexity at most exp(n). Formally,

Theorem 4.3. There is a universal constant d ∈ N such that for all n ∈ N, there exists a d regular

graph G = (V,E) on n vertices such that in poly(n)-time one can construct a set of protocols PG =
{P (a, b)}a,b∈G with work complexity exp(n) and round complexity O(log n), such that if at most ε-fraction

of the edges of G are corrupted, then at most O(ε)-fraction of the vertices of G are doomed.

Note that [Upf92]’s theorem is stated for vertex corruptions, but the statement above for edge corruptions

follows by noting that any degree d network that is tolerant to ε-fraction of vertex corruptions is also tolerant

to ε/d-fraction of edge corruptions, which suffices since d is a fixed constant.

4.3 Proof of Lemma 1.2

We now prove Lemma 1.2, restated below.

Lemma 4.4 (Lemma 1.2 restated). There exists D ∈ N such that for all ε > 0, for large enough n,

there exists a D-regular graph G with Θ(n) vertices such that for each permutation π on V (G), the graph

G admits a set of (ε32, O(ε))-edge-tolerant routing protocols R = {R(u, π(u))} with work complexity

polylogn and round complexity Õ(log n). Furthermore, both the graph and protocols can be constructed in

time poly(n).

Proof. We assume ε 6 c where c is a small absolute constant, otherwise the statement is vacuously true. Let

G1 be the graph from Theorem 4.1 on Θ(N) vertices (N ∈ N to be chosen later) and degree D1 = polylogN

that admits an (ε,O(ε))-edge-tolerant routing protocol with work complexity polylogN. Let G2 be another

graph from Theorem 4.1 on N2 vertices, for D1 6 N2 6 O(D1), and degree polylogD1 that admits a

(Θ(ε2),Θ(ε2))-edge-tolerant routing protocol with work complexity polylogD1. Applying Proposition 4.2

for G2, we get a set of protocols between all pairs of vertices of G2, such that if at most Θ(ε2)-fraction of

the edges of G2 are corrupted, then at most O(ε)-fraction of its vertices are doomed. Now composing G1

and G2 using Lemma 3.1 (in the strengthened setting where |V (H)| 6 O(D1), see Remark 3.4) we get

a graph G3 = G1 r G2 on O(ND1) = NpolylogN vertices, with degree polylogD1 = polyloglogN. We

also get that for every permutation on V (G3), there is a set of routing protocols that are (ε3, ν3)-tolerant

for ε3 = Θ(min(ε4, ε2)) = Θ(ε4) and ν3 = Θ(
√
ε2 + ε) = Θ(ε). The protocols have work complexity

polylogN and round complexity O(logN log logN).
Similarly, composing G3 with another graph G4 from Theorem 4.1 on N2 vertices, with deg(G3) 6

N2 6 O(deg(G3)), we get a graph G5 on NpolylogN vertices, with degree polylogloglogN . We also get

that for every permutation on V (G5), there is a set of routing protocols that are (ε5, ν5)-tolerant for ε5 =
Θ(ε16) and ν5 = Θ(ε). The protocols have work complexity polylogN and round complexity Õ(logN).

Finally, we can compose G5 with a constant degree graph G6 from Theorem 4.3 on N6 vertices and

degree D (a fixed constant), with N6 = deg(G5), to get a graph G7 that has NpolylogN vertices, degree D
and admits (Θ(ε32),Θ(ε))-edge-tolerant protocols for every permutation on V (G7). These protocols have

work complexity polylogN · 2polylogloglogN 6 polylogN and round complexity Õ(logN).
Taking G = G7, N = n/polylogn, gives us a constant degree graph on Θ(n) vertices that has (ε32, ε)-

edge-tolerant protocols with work complexity polylogn and round complexity Õ(log n), for every permuta-

tion.

15

4.4 Proof of Theorem 1.1

One could apply Proposition 4.2 to Lemma 4.4 to get a result for the almost-everywhere reliable transmission

problem with a constant fraction of doomed nodes, but the work complexity would be npolylogn. To get a

result with polylogarithmic work complexity we instead use a simple randomized construction of protocols,

utilizing the protocols from Lemma 4.4 along with a majority.

Corollary 4.5 (Theorem 1.1 restated). There exists D ∈ N such that for all ε > 0, for large enough n, there

exists a D-regular graph G with Θ(n) vertices and a set of protocols R = {R(u, v)}u,v∈G between all pairs

of vertices in G, with work and round complexity polylogn, such that if at most ε32-fraction of edges are

corrupted, then at most O(ε)-fraction of vertices in G are doomed. Furthermore, there is a deterministic

algorithm that computes G in time poly(n) and a randomized algorithm that constructs the protocols in

time poly(n) that satisfy the above tolerance guarantees with probability 1− exp(−npolylogn).

Proof. Let G be the graph from Lemma 4.4 on Θ(n) vertices. Assume n is even without loss of generality,

and break the edges of the complete graph on n vertices into a union of n matchings. For each matching,

apply Lemma 4.4 to get a set of routing protocols that are (ε32, O(ε))-tolerant to edge corruptions. This

gives us a set of routing protocols R′ = {R′(u, v)}u,v∈G between all pairs of vertices in G, such that if at

most ε32-fraction of edges are corrupted then at most O(ε)-fraction of protocols R′(u, v) fail. We now show

how to upgrade this guarantee to the stronger tolerance guarantee where there are only an O(ε)-fraction of

doomed vertices.

For each pair of vertices (u, v), pick a random set of vertices Su,v of size polylogn from G. Let R(u, v)
be the protocol where u sends its message to each vertex w in Su,v via the protocol R′(u,w), and then every

vertex w sends the message it received to v via R′(w, v), and finally v takes a majority vote over all the

messages received. Note that the protocol R(u, v) and R(v, u) may be different; this choice helps make the

analysis cleaner.

To analyze the tolerance guarantees of R = {R(u, v)}, first fix a set of corrupted edges E with measure

ε32 in G. By the above, we know that at most O(ε)-fraction of the protocols R′(u, v) fail, each of which is

called a bad protocol. Let D1 the set of vertices u for which at least 1/8-fraction of R′(u, v) are bad. Using

Markov’s inequality we know that the size of |D1| 6 O(εn).
Fix a vertex u not in D1, and consider the random set Su,v for any v. Call this set corrupted if more than

1/4-fraction of the protocols, R′(u,w) for w ∈ Su,v are bad. Using a Chernoff bound followed by a union

bound over v in G, we get that,

Pr
R
[∃v, Su,v is corrupted] 6 exp(−polylogn).

Now create a set D2 of vertices u for which the above bad event happens, that is, there exists v, such that

Su,v is corrupted. The above bound says that every vertex not in D1, belongs to D2 with probability at most

exp(−polylogn) and furthermore each of these events is independent. Therefore using the multiplicative

Chernoff bound we get that,

Pr
R
[|D2| & εn] 6 exp(−npolylogn).

Similarly let D3 be the set of vertices v /∈ D1, for which there exists u such that Su,v is corrupted.

Using the same analysis as above we get that the size of D3 is also at most O(εn) with probability

1 − exp(−npolylogn). Taking D(E) to be the union of D1, D2 and D3, it is easy to check that every

two vertices w,w′ outside D can communicate perfectly via R(w,w′) and R(w′, w) and,

Pr
R
[|D(E)| & εn] 6 exp(−npolylogn).

16

Finally, we can apply a union bound over all possible sets of adversarial edges E , which are at most 2O(n) in

number since G is a constant-degree graph. This gives that, with probability at least 1− exp(−npolylogn),
the set of protocols R constructed as above has at most an O(ε)-fraction of doomed vertices regardless of

which ε32-fraction of edges the adversary chooses to corrupt.

Acknowledgments

We thank Nikhil Vyas for many helpful discussions, and regret that he declined co-authoring this paper.

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of

NP. J. ACM, 45(1):70–122, 1998.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation (extended abstract). In Janos Simon, edi-

tor, STOC 1988, pages 1–10. ACM, 1988.

[BMV24] Mitali Bafna, Dor Minzer, and Nikhil Vyas. Quasi-linear size pcps with small soundness from

HDX. CoRR, abs/2407.12762, 2024.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure proto-

cols (extended abstract). In Janos Simon, editor, STOC 1988, pages 11–19. ACM, 1988.

[CFG+22] Nishanth Chandran, Pouyan Forghani, Juan A. Garay, Rafail Ostrovsky, Rutvik Patel, and Vas-

silis Zikas. Universally composable almost-everywhere secure computation. In ITC 2022,

volume 230 of LIPIcs, pages 14:1–14:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2022.

[CGO10] Nishanth Chandran, Juan Garay, and Rafail Ostrovsky. Improved fault tolerance and secure

computation on sparse networks. In ICALP 2010, pages 249–260. Springer, 2010.

[CGO12] Nishanth Chandran, Juan Garay, and Rafail Ostrovsky. Edge fault tolerance on sparse networks.

In ICALP 2012, pages 452–463. Springer, 2012.

[DPPU86] Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. Fault tolerance in networks

of bounded degree. In STOC 1986, pages 370–379, 1986.

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive

proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996.

[GO08] Juan A. Garay and Rafail Ostrovsky. Almost-everywhere secure computation. In Nigel P.

Smart, editor, EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages

307–323. Springer, 2008.

17

[JRV20] Siddhartha Jayanti, Srinivasan Raghuraman, and Nikhil Vyas. Efficient constructions for

almost-everywhere secure computation. In EUROCRYPT 2020, pages 159–183. Springer, 2020.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.

ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[LSV05a] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of Ramanujan

complexes of type Ãd. Eur. J. Comb., 26(6):965–993, 2005.

[LSV05b] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Ramanujan complexes of type Ãd. Israel

journal of Mathematics, 149:267–299, 2005.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,

and new constant-degree expanders. Annals of Mathematics, pages 157–187, 2002.

[Upf92] Eli Upfal. Tolerating linear number of faults in networks of bounded degree. In Proceedings

of the eleventh annual ACM symposium on Principles of distributed computing, pages 83–89,

1992.

18

	Introduction
	Our Results
	Implications
	Techniques
	The Balanced Replacement Product
	Routing Protocols on the Composed Graph
	Using Composition to Obtain Sparse Networks

	Preliminaries
	Routing Protocols under Adversarial Corruptions

	Composition of Protocols using the Replacement Product
	The Protocol on Z
	Analysis of Protocols Generated by algo:zz-protocol

	Routing Network with Constant Tolerance and Constant Degree
	A Routing Network with Polylogarithmic Degree
	A Routing Network with Constant Degree and Exponential Work Complexity
	Proof of thm:main
	Proof of cor:main

